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Sea ice retreat, seawater warming, and now ocean acidification are recognized as physical 

stressors impacting the productive benthic communities on the shallow continental 

shelves of the northern Bering and Chukchi Seas, particularly calcifying organisms like 

bivalves that are prey items for benthivorous predators including walruses, eiders, and 

bearded seals. Using time-series benthic faunal collections and laboratory experiments, 

my research: 1) evaluates the abundance and dominant size class of Macoma calcarea in 

the northern Bering Sea and the southeastern Chukchi Sea during summer months from 

1998-2014, and 2) investigates the effects of ocean acidification on growth and oxygen 

consumption of two size classes of three dominant bivalve species, M. calcarea, Astarte 

montagui, and Astarte borealis. Results suggest a northward shift in bivalve distribution 



 
 

 
 

(p < 0.01) and a recent size reduction at both sites. Experimental results suggest that one 

dominant size class (2.1-3 cm) will be more susceptible to ocean acidification. 
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Chapter 1: Introduction  

Ocean Acidification Research Interest in the Arctic 

Atmospheric carbon dioxide concentrations are rising and have been steadily 

increasing in recent decades from activities like burning of fossil fuels, deforestation and 

other land use changes, and cement production (e.g. Ciais et al. 2013, Le Quéré et al. 

2015). The ocean acts as a sink, absorbing about 30% of the anthropogenic produced CO2 

(Sabine and Feely 2007), and it has been suggested that on a multiple thousand year time 

scale, about 90% of the anthropogenically produced CO2 will be absorbed by the ocean 

(Sabine et al. 2004). Changes to ocean chemistry, caused by increases of dissolved CO2 

into the oceans, termed ocean acidification, are expected to disrupt the balance of the 

chemical equilibria and change the carbonate chemistry and speciation of carbon in the 

oceans (e.g. Caldeira and Wickett 2003, 2005, Feely et al. 2004, Orr et al. 2005). The 

changing ocean chemistry around the world has potentially strong impacts for calcifying 

marine organisms (e.g. Kleypas et al. 1999, Riebesell et al. 2000). Decreases in pH and 

the subsequent decrease in the saturation state of calcium carbonate in seawater can affect 

organisms in two primary ways: changes to calcification rate and disturbances to acid-

base (metabolic) physiology (Fabry et al. 2008, Feely et al. 2009, Waldbusser et al. 

2014), but it may also cause changes to physiology, development, and behavior 

(Melatunan et al. 2013). 

Undersaturation of calcium carbonate is expected to occur in the high latitude 

seas, and the Arctic and Southern Oceans, earlier than other regions because these marine 

waters often have naturally lower pH values, inherently low concentrations of carbonate 

ions, and cold water temperatures that lead to enhanced solubility of gases, including CO2 
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(Orr et al. 2005, Bates and Mathis 2009, Fabry et al. 2009, Steinacher et al. 2009). These 

high latitude systems, therefore, can act as bellwethers for more temperate and tropical 

ecosystems (Fabry et al. 2009). The saturation state (ɋ), is the value that determines if 

calcium carbonate, the material many shells and tests are comprised from, is in 

equilibrium (ɋ=1) with seawater, or if it will precipitate (ɋ>1) or dissolve (ɋ<1) based 

upon exchange with the carbonate system in seawater. These ɋ values are already lower 

in the high latitude regions because the solubility of calcium carbonate increases with 

decreasing temperatures. The saturation horizon, the depth at which carbonates are 

saturated above, but undersaturated below, is expected to shoal, (i.e. become shallower), 

as CO2 concentrations increase (Fabry et al. 2008). Because the saturation states in the 

high latitude regions are already relatively low, increasing CO2 concentrations will drive 

further shoaling of the saturation horizon (Fabry et al. 2008). Model predictions suggest 

aragonite (the more soluble form of calcium carbonate) will be undersaturated in the 

surface waters of the Southern Ocean as early as 2050 (Orr et al. 2005), while the surface 

waters of the Arctic were predicted to see signs of ocean acidification as early as 2016 

(Steinacher et al. 2009). Cases of seasonal undersaturations in bottom waters of the 

Arctic were reported as early as 2002 (e.g. Bates et al. 2009, Mathis et al. 2011a, Mathis 

and Questal 2013). Several studies have documented the changing chemistry of the 

Pacific Arctic in regard to ocean acidification (pH and pCO2 measurements) and 

changing saturation states (e.g. Bates et al. 2009, Mathis et al. 2011a, Mathis and Questal 

2013, Mathis et al. 2015); however, currently very little is known about how the 

organisms of this area will respond to the chemical changes.  
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This study aims to determine the potential biological effects of decreased pH, 

which are already observed seasonally in the Chukchi Sea (Mathis and Questal 2013, 

Yamamoto-Kawai et al. 2016), on three common Pacific Arctic bivalve species, Macoma 

calcarea, dominant in the SE Chukchi Sea, and Astarte borealis and Astarte montagui, 

both dominant in the NE Chukchi Sea. Additionally, I place observed changes from 

laboratory ocean acidification experiments (Chapter 2) into context with a time-series 

data set of changing abundance and dominant size class of M. calcarea at six other 

locations, five in the northern Bering Sea and one in the SE Chukchi Sea (Chapter 3) 

(Table 1.1) 

Ocean Acidification and the Calcium Carbonate System 

Concentrations of atmospheric CO2 during the pre-industrial period (based upon 

the 800,000 year ice core record) fluctuated between 200 and 280 ppm (Sabine et al. 

2004, Lüthi et al. 2008). By 2004, concentrations averaged around 380 ppm, and today 

the global average atmospheric concentration of CO2 exceeds 400 ppm (ñTrends in 

Atmospheric Carbon Dioxideò 2016). Because the rate at which the concentration of 

atmospheric CO2 is rising faster than it has in the last 50 million years (Caldeira and 

Wickett 2003, Hönisch et al. 2012), the role of the ocean as a potential sink for the 

increased atmospheric releases of CO2 has become increasingly important. Without the 

ocean as a sink, atmospheric concentrations of CO2 would be 55% higher (Sabine et al. 

2004).  

The net effect of adding CO2 to seawater is to increase the concentration of 

carbonic acid (H2CO3, Eq.1), bicarbonate (HCO3
-
, and H

+ 
(Eq. 2), and to decrease 

concentrations of the carbonate ion (CO3
2-

, Eq. 3) (see formulas below): 
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CO2 + H2O ź H2CO3 (carbonic acid)                                                                       (Eq. 1) 

H2CO3 ź H
+
 + HCO3

- 
(bicarbonate)                                                                         (Eq. 2)  

H
+ 

+ CO3
2-

 (carbonate) ź HCO3
-
                                                                              (Eq. 3) 

The carbonate ions in the water bond with the additional H
+
 ions favoring the product 

(HCO3
-
) in Eq. 3, thus causing carbonate ions to become unavailable for organisms to use 

in shell and test creation. Under these conditions of ocean acidification, pH decreases. 

Importantly the higher acidity makes the water corrosive to carbonate structures. The 

lowest emission scenarios from the Intergovernmental Panel on Climate Change (IPCC) 

project a decrease of 0.3 in open ocean surface pH by the end of this century, while the 

highest emission scenarios project decreases in surface pH by as much as 0.5 (Caldeira 

and Wickett 2005). As of 2005, the global average of surface pH had decreased by 0.1 

(Caldeira and Wickett 2005).  

Many marine organisms, e.g. molluscs and corals, precipitate carbonate ions into 

solid calcium carbonate structures (Eq. 4).  

Ca
2+ 

+ 2HCO3
- 
ź CO2 + H2O + CaCO3                                                                                                     (Eq. 4) 

The saturation state (Eq. 5) dictates whether the precipitated calcium carbonate will 

remain stable as a precipitate or will be subject to dissolution.  

ɋ= [Ca
2+

] [CO3
2-
] / Ksp                                                                                                                                             (Eq. 5) 

Dissolution of calcium carbonate structures is favored when the water becomes 

undersaturated in carbonate ion, (i.e. when ɋ < 1), but organisms have shown varying 

responses, and precipitation can occur at apparently undersaturated conditions (e.g. 
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Barton et al. 2012, Waldbusser et al. 2014). Calcium ions in the oceans are conservatively 

distributed and co-vary with salinity, so changes in the carbonate ion directly relate to 

changes in the carbonate saturation state (Fabry et al. 2008). Modeling indicates that 

doubling of atmospheric CO2 concentrations will lead to a decrease of 30% in carbonate 

ion concentration and a 60% increase of H
+ 
ions (Sabine et al. 2004).  

The two common forms of calcium carbonate that organisms utilize in mollusc 

shell production are aragonite and calcite, which are precipitated in saturated 

environments. Aragonite is more soluble, and is therefore more susceptible to dissolution 

in undersaturated waters. Calcite and aragonite global saturation (ɋ) states, when 

atmospheric CO2 concentrations were around 280 ppm, averaged around 5.2 and 3.4 

respectively (Caldeira and Wickett 2005). In 2000, after atmospheric CO2 concentrations 

rose to about 380 ppm and the global surface pH dropped about 0.1 units, the global 

saturation state of calcite was approximately 4.4 and the global aragonite saturation state 

was about 2.9 (Caldeira and Wickett 2005). 

Ocean Acidification in the Pacific Arctic 

Under the IPPCôs A2 business as usual scenario (meaning no changes in 

mitigating atmospheric carbon dioxide emissions will be undertaken), the atmospheric 

CO2 concentration increases to 552 ppm by 2054, and at that concentration, 50% of the 

Arctic Oceanôs surface is expected to be undersaturated in aragonite for the entire year. 

Predictions indicate that the entire water column will be undersaturated when 

atmospheric carbon dioxide concentrations increase to 765 ppm (Fabry et al. 2009). 

Although carbon dioxide concentrations are currently not that high, seasonal ocean 

acidification events are already being documented in the Pacific Arctic, in both the 
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Bering and Chukchi Seas (Bates and Mathis 2009, Bates et al. 2009, Mathis et al. 2011a, 

Mathis et al. 2011b, Cross et al. 2013, Yamamoto-Kawai et al. 2016).  

In addition to a low carbonate ion concentration and cold waters, the Pacific 

influenced Arctic possesses other characteristics that will exacerbate ocean acidification 

events. The primary system that drives undersaturations in this region is the biological 

pump and the Phytoplankton Carbonate Saturation State (PhyCaSS) (Bates and Mathis 

2009, Mathis et al. 2011a, Mathis et al. 2011b). Phytoplankton blooms at the surface 

utilize dissolved inorganic carbon (DIC), including CO2, in the mixed layer. This uptake 

of CO2 decreases the H
+ 
ion concentration (Eq. 1-3), which leads to an increase in the pH, 

which is the opposite of the sequence described above. The carbonate ion (Eq. 3) is also 

more bioavailable, thus increasing the saturation state of calcium carbonate in the surface 

waters (e.g. Cross et al. 2012). However, production during a bloom is uncoupled from 

grazers (Bates and Mathis et al. 2009, Mathis et al. 2011b), so organic material from the 

bloom sinks to the bottom, where it is remineralized by benthic organisms through 

respiration. This produces CO2, thus driving the pH and the calcium carbonate saturation 

state down in bottom waters (Bates and Mathis 2009).  

A second mechanism leading to enhanced ocean acidification events is the 

changes in sea ice extent and retreat as well as other sources of freshwater input. Seasonal 

sea ice extent is declining and retreat of the sea ice is occurring earlier in the season (Frey 

et al. 2014). Freshwater input from sea ice melt decreases total alkalinity, which reduces 

carbonate buffering capacity, and therefore can lead to undersaturations of aragonite in 

the surface waters (Steinacher et al. 2009, Bates et al. 2014). Additionally, as sea ice 

declines, more open water is exposed creating a greater surface area for sea-air exchange 
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of gases, including anthropogenic CO2, as well as a greater area for a potential increase of 

primary production (e.g. Cross et al. 2014). An increase in primary production could 

presumably intensify the PhyCaSS processes with additional uptake of inorganic carbon. 

This exposure of more open water has also led to an increase of carbon uptake by the 

Arctic Ocean from 24 to 66 Tg C per year over three decades (Bates et al. 2006). 

Biological Consequences of Ocean Acidification 

Changing ocean chemistry around the world has potentially strong impacts upon 

calcifying marine organisms (e.g. Kleypas et al. 1999, Riebesell et al. 2000). Changes to 

calcification, physiology, and behavior have been documented in molluscs due to 

decreased pH (Fabry et al. 2008, Feely et al. 2009, Melatunan et al. 2013, Waldbusser et 

al. 2014). Shells and hard structures that provide many benefits, including protection 

from predation, for the organisms that produce them are often affected by these changes. 

Therefore, threats, such as dissolution from carbonate undersaturations and stresses from 

decreased pH to shell composition, may lead to reduced fitness in these organisms, thus 

potentially giving a competitive advantage to non-calcifying organisms that are not 

facing the same stressors in how to allocate energy for maintenance of a calcium 

carbonate shell (Fabry et al. 2008). Biological studies in the high latitudes are needed 

because these regions, as documented above, are expected to be impacted sooner under 

high CO2 condition and how organisms will respond is poorly understood. 

Description of Study Area 

Bivalves for the study were collected from seven different sites, one in the SE 

Chukchi Sea (station UTN 2, 67.050 N, 168.728 W), one in the NE Chukchi Sea (station 

ML 5-10, 71.603 N, 162.202 W), and five in the northern Bering Sea (Table 1.1, Figure 
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1.1). Animals were collected from station ML 5-10 aboard the RV Norsemen II as part of 

the Arctic Marine Biodiversity Observing Network (AMBON) project in 2015 and used 

for ocean acidification experiments presented in Chapter 2. Collections for bivalve 

growth characterizations were made from station UTN 2 aboard the Canadian Coast 

Guard Ship (CCGS) Sir Wilfrid Laurier (SWL) in 2014 and 2015 as part of the 

Distributed Biological Observatory (DBO) effort that undertakes repeated observations of 

biological variables at ecologically productive locations in the Pacific Arctic. The growth 

data collected from the SE Chukchi Sea 2014 and 2015 samples (SWL UTN 2) were used 

for comparison to the growth data collected from the NE Chukchi Sea station (AMBON 

ML 5-10). Additionally, these data are added to a time-series of abundance and size 

(1998-2012) of M. calcarea from the five sites in the northern Bering Sea and the SE 

Chukchi Sea site, which are presented in Chapter 3.  

The general area where these samples were collected, the northern Bering Sea, 

and the SE and NE Chukchi Sea are recognized as some of the most seasonally 

productive areas in the world, while also acting as a carbon sink particularly in May and 

June, when large phytoplankton blooms associated with melting sea ice occur (Springer 

et al. 1996, Lee et al. 2007, Gradinger 2009, Cooper et al. 2012). Ice melt during the 

spring permits greater light penetration and increased stratification allowing for nutrients 

in the surface waters to be utilized by phytoplankton (Grebmeier 2012). The sea ice 

dynamics and the variability of the ice cover, affects the length and intensity of the 

phytoplankton production in this region (Arrigo et al. 2008). Pacific waters advected into 

the area bring nutrients, heat, and organic carbon to the shelf, adding to the organic 

material already produced there (Grebmeier et al. 2015). Because of reduced zooplankton 
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grazing, this large amount of organic matter is deposited to the sediments below 

(Grebmeier et al. 2006b, Nelson et al. 2014) creating localized and regionally high 

biomass in the benthos, which have been termed hotspots (Grebmeier et al. 2006a, 

Grebmeier et al. 2015). The location of these hotspots coincides with high levels of 

chlorophyll-a in the water column (e.g. Lee et al. 2007, Brown et al. 2011, Cooper et al. 

2012, 2013). These areas of high benthic biomass provide productive foraging grounds 

for higher trophic predators such as walrus, gray whales, and diving sea ducks (Lovvorn 

et al. 2009, Jay et al. 2012, Moore et al. 2014) 

The northern Bering Sea, which includes the St. Lawrence Island Polynya (SLIP) 

sites, has sediments comprised mainly of fine-grained silt and clay (~71-73%) with high 

total organic carbon (TOC) concentrations due to low current speeds (Grebmeier et al. 

2015). Nutrient concentrations in the bottom water are often high as well due to the 

proximity to nutrient-rich upwelled Anadyr waters (Figure 1.2). Bottom temperatures, 

however, tend to be colder, with mean values even in summer averaging around -1.6 °C 

(Grebmeier et al. 2015). The ice dynamics in this area have been relatively stable over the 

last several years (Grebmeier et al. 2015). The dominant benthic organisms in this 

particular hotspot are bivalves and polychaetes that provide food for spectacled eiders, 

bearded seals, and walruses (Lovvorn et al. 2014, Moore et al. 2014, Jay et al. 2014, 

Figure 1.3). Feeding by these benthivores generally occurs during the winter and early 

spring, while there is still sea ice (Grebmeier et al. 2015). The persistence of this hotspot 

is likely due to early primary production that settles because of slower currents into 

consistently cold bottom waters prior to significant grazing (Grebmeier and Barry 2007, 

Cooper et al. 2012, 2013).  
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Station UTN 2 lies within the southeast Chukchi Sea hotspot (SECS) (Figure 1.3). 

Water advected into this region comes from three sources: salty, cold Anadyr water, 

warmer and fresher Alaska Coastal Water, and an intermediate Bering Sea water that is a 

mixture of the two (Spall 2007, Figure 1.2). The sediments of this region are very similar 

to that of the northern Bering Sea, with ~71-73% of the sediment comprised of silt and 

clay, and these sediments have a high total organic carbon (TOC) content (Grebmeier et 

al. 2015). While similar in sediment composition and TOC concentration, the average 

bottom water temperature here is much warmer in summer (2.2 °C from July-September) 

due to variable stratification and stronger mixing (Grebmeier et al. 2015). Sea ice 

persistence in this hotspot has changed in the last several decades. Annually, sea ice 

extent is declining by 9-12 days per decade, break-up of ice in the spring is occurring 3-5 

days earlier per decade, and re-freezing in the fall is happening 7-8 days later per decade 

(Grebmeier et al. 2015). These changes in ice conditions have implications for the 

phytoplankton blooms that ultimately feed and maintain the benthic biomass. Arrigo et al. 

(2011) hypothesized that primary production may initially increase as sea ice declines 

because more exposed open water allows more light penetration. However, with warming 

and increases of freshwater input, stratification of the water column may increase causing 

nutrient depletion, thus ultimately reducing primary production (Grebmeier et al. 2006b). 

These changes in primary production may not only affect the benthos, but also have 

implications for ocean acidification events. Similar to the northern Bering Sea, this 

hotspot is dominated by bivalves, specifically Macoma, Nuculanidae, and, Nuculidae, as 

well as polychaetes, and it also provides foraging grounds for upper trophic organisms 

(Grebmeier 2012, Figure 1.3). Telemetry studies indicate that walruses forage here during 
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spring and the fall, and the latter season has been when ocean acidification events have 

been documented (Jay et al. 2012, Mathis and Questal 2013). High annual primary 

production, mixing of several water masses, including Anadyr water with high nutrients, 

and varying sediment composition helps to sustain this hotspot (Grebmeier et al. 2006a).  

 Finally, collections were made at the ML 5-10 site that occurs within the 

northeastern Chukchi Sea hotspot (NECS) (Figure 1.3). While silt and clay are still the 

primary sediment type here, it makes up a lower percentage (~52%) in the more 

heterogeneous sediment types than it does at the other two hotspots (Grebmeier et al. 

2015). Bottom temperatures here lie between the means for the northern Bering Sea and 

the SECS, averaging -0.7 °C from May to September (Grebmeier et al. 2015). Annual sea 

ice changes here are the most prominent, but show similar trends as at the SECS site. 

Persistence of sea ice decreased by approximately 30 days per decade and freeze up 

occurred about 15 days later per decade (Grebmeier et al. 2015). Again these changes 

will have consequences for primary production in the region (Grebmeier et al. 2006b, 

Arrigo et al. 2011), which may lead to changes in seasonal ocean acidification and 

associated consequences. The offshore locations in this hotspot are dominated by 

bivalves, polychaetes, and sipunculids, while at the inshore stations amphipods dominate 

(Grebmeier et al. 2015). As is the case in the SECS, walruses use this area as a foraging 

ground, and they are present during the summer months (Jay et al. 2012). Maintenance of 

this hotspot is due to variable organic carbon content associated with variable 

productivity and steering of cold bottom waters with high nutrient content through the 

complex bottom topography (Blanchard and Feder 2014, Grebmeier et al. 2015). 
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 Overall, among these three sites, benthic biomass (measured as both g wet weight 

per square meter and dry weight g C per square meter) increases northward, but overall, 

biomass decreased during 2000-2012. Benthic biomass (measured same as above) in the 

northern Bering Sea averaged 16 g organic C   m
-2

, the SECS averaged 32 g organic        

C m
-2

, and the NECS hotspot declined to 13 g organic C m
-2

 (Grebmeier et al. 2015). 

These sites provide study areas for examining biological responses in a shallow shelf 

system to changes in sea ice, other physical factors like temperature, and phenomenon 

like ocean acidification.  

Description of Study Organisms 

 Benthic macrofanual communities in the Arctic provide good indicators of 

changing environmental conditions because of long and sessile life spans that allow them 

to be easily and consistently sampled (Warwick 1993, Grebmeier et al. 2010, Iken et al. 

2013). Bivalves were chosen as the study organism because of their prevalence in the 

Pacific Arctic, calcium carbonate shells, and their role as an important prey base for 

higher trophic animals including walrus (Sheffield and Grebmeier 2009) and diving sea 

ducks (Lovvorn et al. 2009).  

 I used three species for the ocean acidification experiments in Chapter 2, Macoma 

calcarea, Astarte montagui, and Astarte borealis. Chapter 3 focused on historical 

abundance and size data for M. calcarea based upon collections made in 1998-2012. M. 

calcarea generally reach up to about 45 mm, and those used in the ocean acidification 

experiments ranged from 15-45 mm. They are both deposit and suspension feeders that 

live in muddy/gravelly benthos, and have free swimming pelagic larvae. Their shells are 
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comprised of aragonite (Wassenaar et al. 1988) adding to the value of studying them 

under conditions of ocean acidification.  

 The two Astarte species have similar characteristics. Both are suspension feeders, 

benthic as adults, with free swimming pelagic larvae. A. montagui usually reach about 

12.5-20 mm in length (Gofas 2004a) and A. borealis can reach up to 25-50 mm (Gofas 

2004b). The length of organisms used in the experiments ranged from 14-23 mm and 25-

35 mm, respectively. As is the case with M. calcarea, both produce an aragonite shell 

(Majewske 1974, Simstich et al. 2005), making them suitable for studies of ocean 

acidification vulnerability.  

Rationale for Study 

The Pacific Arctic ecosystem is sustained by high production of large 

phytoplankton species, such as diatoms (e.g. Grebmeier et al. 2008) and a large 

proportion of water column organic matter is exported to the bottom waters because this 

production is largely uncoupled from water column grazing (Mathis and Questal 2013). 

Up to 75% of the production from the phytoplankton bloom can be exported to the 

bottom because of delays in the initiation of grazing (Mathis et al. 2007). These high 

rates of carbon export to the bottom from surface waters supply food for the benthos, but 

it also makes this region a strong seasonal sink for atmospheric CO2 (Mathis and Questal 

2013). Annual uptake estimates for CO2 in the Chukchi Sea are as high as 53 Tg C/year 

(Bates 2006, Bates et al. 2011), and because of shallow bathymetry (~ 50 meters), 

anthropogenic CO2 inputs can immediately infiltrate bottom waters (Yamamoto-Kawai et 

al. 2016). The remineralization of organic matter and production of CO2 from respiration 

results in decreased pH, increased partial pressure of CO2, and suppressed aragonite 
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saturation states (Bates and Mathis 2009), with the strongest suppression to date 

occurring at the head of Barrow Canyon (Bates et al. 2009). In 2010, pH in some bottom 

waters of the Chukchi Sea declined to as low as 7.75 and aragonite undersaturations were 

present in bottom water throughout September and October (Mathis and Questal 2013). 

Similar patterns were observed at Hope Valley in the SE Chukchi Sea, near station UTN 

2, in 2012 (Yamamoto-Kawai 2016). In the end, this export production that provides the 

food for a successful and biologically diverse benthic community, which in turn supports 

higher trophic levels like diving ducks, whales, seals, and walruses (Grebmeier et al. 

2006a), also leads to elevated rates of respiration and remineralization of organic matter 

(Grebmeier and McRoy 1989, Grebmeier et al. 2006a) causing reductions in pH and 

saturation states that may affect the production of calcium carbonate shells and tests of 

these benthic organisms (Mathis et al. 2011a).  

Based upon documentation of ocean acidification events and decreased pH in the 

bottom waters in the Chukchi Sea during the summer and fall months (Bates et al. 2009, 

2013, Mathis et al. 2014, Bates 2015, Yamamoto-Kawai et al. 2016), it is crucial that 

biological studies complement the chemical and physical observations. These studies are 

necessary to understand and forecast the biological impacts this region will undergo. 

However, these impacts are uncertain because different species can be expected to 

respond differently. Arctic pteropods (Limacina helicina) and juvenile red king 

(Paralithodes camtschaticus) and tanner crabs (Chionoecetes bairdi) demonstrated 

negative responses to carbonate undersaturations (Comeau et al. 2009, Long et al. 2013), 

whereas studies of walleye pollock (Theragra chalcogramma) uncovered no negative 

effects, but the effects on their calcifying prey are unknown (Hurst et al. 2012). The 
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saturation state in the Chukchi Sea is seasonally variable, but it is expected to shift out of 

the historical range (ɋ= 1.2 Ñ 0.1) of variability for most of the year as early as 2027 

(Mathis et al. 2015), posing an environmental challenge to shell production and 

maintenance. Therefore, there is an urgency to understanding what impacts this will have 

on benthic organisms, which are currently experiencing undersaturations in the summer 

and fall in the Chukchi Sea (Mathis and Questal 2013).  

Bivalves are an important component of the Chukchi Sea benthos (e.g. Grebmeier 

et al. 2015). Molluscs, in other studies and ecosystems, have exhibited reductions in 

growth, decreased calcification rates, and reductions in metabolic activity (e.g. Feely et 

al. 2004, Orr et al. 2005, Gazeau et al. 2007). Some of the higher trophic animals that 

feed on bivalves are a source of subsistence food in in local villages. These trophic 

connections make it crucial to understand how these sustained, seasonal ocean 

acidification events will affect the biology of lower trophic organisms in the region.  

My study aims to evaluate the potential effects of decreased pH on the growth and 

oxygen consumption of three Pacific Arctic bivalve species representative of the lower 

trophic food base in the Chukchi Sea. Laboratory experiments aim to characterize these 

changes on M. calcarea, A. borealis, and A. montagui. Additionally, use of time-series 

data (length and size of M. calcarea) will allow me to try and place any observed changes 

from laboratory ocean acidification experiments into a larger context.  
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Statement of Hypotheses and Thesis Structure 

Six objectives were identified and explored in two subsequent chapters to help 

understand the effects of ocean acidification and decreased pH on the three bivalve 

species specified above: 

2.1 Do elevated CO2 concentrations and therefore subsequent decreased pH in bottom 

waters alter growth and oxygen consumption in the three Pacific Arctic bivalve 

species? 

2.2 Will food availability play the same role in the vulnerability from effects associated 

with decreased pH and ocean acidification of the three Pacific Arctic bivalves? 

2.3 Does the size of the bivalve affect the growth or oxygen consumption response to 

decreased pH? 

3.1 I frame these studies of abundance and size of M. calcarea into hypotheses to test for 

changes over the past fifteen years at the six study sites in the northern Bering Sea 

and the southeastern Chukchi Sea.  

3.2  Does total abundance and distribution of size classes differ among the six sites (SLIP 

1-5, and UTN 2) throughout the fifteen-year time-series? 

3.3 Do allometric growth equations of recently collected bivalves differ between 

sampling sites? 

In trying to address these six objectives, I develop hypotheses and future experiments to 

test whether a sustained decrease in pH values could cause changes in dominant size of 

bivalves in the northern Bering Sea and the SE Chukchi Sea. 
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The hypotheses described above are tested and explored in two of the following 

chapters. In Chapter 2, results from two sets of experiments investigating the effects of 

decreased pH and controlled food availability are presented, testing hypotheses 2.1, 2.2, 

and 2.3. The first set of experiments was undertaken for seven weeks from October-

December 2015 and consisted of two separate pH treatments. The second set of 

experiments was undertaken for eleven weeks from January- April 2016 and consisted of 

four treatments, altering both pH and food availability. Statistical tests, including t-test 

comparisons, Kruskal Wallis one way analysis of variance, and two-way analysis of 

variance (ANOVA) were used to analyze differences in several parameters, including % 

change in length (mm) and wet weight (g) and oxygen consumption (mg O2/L/hour).  

Material in Chapter 3 tests hypotheses 3.1, 3.2, and 3.3 using time-series data 

from 1998-2012 of changing abundance and dominant size class of select bivalves at sites 

in the northern Bering Sea and the southeastern Chukchi Sea (Table 1.1). I utilized 

dynamic factor analysis and additional clustering techniques to explore how abundance 

has changed at these sites in the fifteen year time frame and to make inferences as to how 

it will continue to change in the future. Results from these analyses were used to make 

predictions about the role ocean acidification may have played in smaller bivalves and 

shifting abundance.  

Chapter 4 frames the role ocean acidification is potentially playing in driving 

changes in bivalve abundance and dominant size classes in the Pacific Arctic. This 

chapter also contains concluding remarks and recommendations for future work.   
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Tables 
 

 

Table 1.1 Latitude and longitude for the six stations used in abundance and size time-series analysis. 

 

  
Station Latitude (N) Longitude (W) 

SLIP 1 62.011 -175.059 

SLIP 2 62.049 -175.209 

SLIP 3 62.390 -174.570 

SLIP 5 62.560 -173.549 

SLIP 4 63.030 -173.460 

UTN 2 67.049 -168.728 
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Figures  

 

  
Figure 1.1 Map of stations with bivalve collections used in this study. Collections from the red station (ML 5-10) 

were part of the Arctic Marine Biodiversity Observing Network (AMBON) in 2015 and used for ocean 

acidification experiments (Chapter 2). Collections from purple stations (SLIP 1-5, UTN 2) were part of the 

Distributed Biological Observatory (DBO) cruises from 1998-2015 and were used to characterize growth 

relationships and changes in abundance and dominant size class (Chapter 3).  
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Figure 1.2 Map of the currents in the study region. Figure from Grebmeier 2012. 
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Figure 1.3 Map of the benthic hotspots and dominant taxa, highlighting the three used in this study. Figure 

modified from Grebmeier et al. 2015. Key: SLIP=St. Lawrence Island Polynya region, SECS=Southeast 

Chukchi Sea, NECS=Northeast Chukchi Sea. 
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Chapter 2: Implications of Ocean Acidification in the Pacific Arctic: Experimental 

Responses of three Arctic Bivalves to Decreased pH and Food Availability 

Abstract 

Recent sea ice retreat and seawater warming in the Pacific Arctic are physical 

changes that are impacting arctic biological communities. Recently ocean acidification 

from increases in anthropogenic CO2 has been identified as an additional stressor, 

particularly to calcifying organisms such as bivalves, which are common prey items for 

walruses, bearded seals, and diving seaducks (Moore et al. 2014). I investigated the 

effects of decreased pH and food availability on both growth (% change in length and wet 

weight and allometric growth characterizations) and oxygen consumption (mg O2/L/hour) 

of three common Arctic bivalves, Macoma calcarea, Astarte montagui, and Astarte 

borealis. Two sets of experiments were run for seven and eleven weeks, exposing the 

bivalves to ambient (8.05 ± 0.02 and 8.19 ± 0.003, respectively) and acidified (7.76 ± 

0.01 and 7.86 ± 0.01 respectively) treatments. Although length, weight, and oxygen 

consumption were not significantly different among treatments, particularly in the seven-

week exposure, negative effects were observed by the end of the eleven-week exposure. 

Specifically, shells of A. borealis displayed a decrease in length in response to decreased 

pH and M. calcarea showed a decrease in length in response to limited food. While these 

negative effects were small, and species responses varied, these observations suggest that 

with sufficiently long exposure, growth may be affected by decreased pH in some of 

these species.  
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1. Introduction   

1.1 Ocean Acidification in the Pacific Arctic 

Atmospheric CO2 continues to increase due to human activities such as burning of 

fossil fuels and deforestation. The oceans act as a sink for this anthropogenic CO2, 

absorbing about 30% of the anthropogenic contributions (Sabine and Feely 2007). 

Increases of dissolved CO2 into the oceans are expected to alter the balance of chemical 

equilibria for the inorganic carbon system, changing carbonate chemistry and speciation 

of carbon in the oceans (Caldeira and Wickett 2003, 2005, Feely et al. 2004, Orr et al. 

2005). The net effect of adding CO2 to seawater is an increase in the concentration of 

carbonic acid, bicarbonate, and H
+
, and a decrease in the carbonate ion. The carbonate 

ions in the water bond with the additional H
+
, causing carbonate ions to become less 

available for calcifying organisms to use in shell and test creation. Under these 

conditions, pH decreases, making the water more acidic and corrosive to carbonate 

structures.  

The changing ocean chemistry around the world has potentially strong impacts for 

calcifying marine organisms (e.g. Kleypas et al. 1999, Riebesell et al. 2000). The 

saturation state (ɋ), describes whether calcium carbonate, the material that comprises 

many shells and tests, is in equilibrium (ɋ=1) with seawater or if the concentration of H
+ 

ions
 
is low enough to favor precipitation (ɋ>1) or high enough to favor dissolution 

(ɋ<1). ɋ values for both aragonite and calcite are already relative low at high latitudes 

because the solubility of calcium carbonate increases with decreasing water temperatures. 

The carbonate saturation horizon, the depth at which ɋ=1, and waters are saturated 

above, but undersaturated below with respect to calcium carbonate, is expected to 
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become shallower as CO2 concentrations increase (Fabry et al. 2008). Organisms 

primarily use one of two forms of calcium carbonate, aragonite, which is the more 

soluble of the two, and calcite.  

Decreases in pH and the subsequent decrease in the saturation state of aragonite 

or calcite can affect organisms in two primary ways: changes to calcification rate and 

disturbances to acid-base (metabolic) physiology (Fabry et al. 2008, Feely et al. 2009, 

Waldbusser et al. 2014), but changes may also occur to physiology, development, and 

behavior (Melatunan et al. 2013). Additionally, shells and hard structures provide many 

benefits, including protection from predators for the organisms that produce them. 

Therefore, threats, such as dissolution of shell structure from carbonate undersaturations, 

may lead to reduced fitness, thus potentially giving a competitive advantage to non-

calcifying organisms (Fabry et al. 2008).  

Both the Bering and Chukchi Seas in the Pacific Arctic are already showing signs 

of intensified seasonal ocean acidification events in the surface and bottom waters (Bates 

and Mathis 2009, Bates et al. 2009, Mathis et al. 2011a, Mathis et al. 2011b, Cross et al. 

2013, Yamamoto-Kawai et al. 2016). The natural variability in the carbonate system and 

pH of the Pacific Arctic are partly controlled by the local seasonal oceanography. The 

Bering and Chukchi Seas are affected by freshwater input from both river runoff, 

including runoff that is entrained within the Bering Sea inflow to the Arctic Ocean 

(Mathis et al. 2011a), along with sea ice melt. Freshwater input from sea ice melt 

decreases total alkalinity, which reduces the carbonate buffering capacity, and therefore 

can lead to undersaturation of aragonite in the surface waters (Steinacher et al. 2009, 

Bates et al. 2014). Additionally, seasonal sea ice extent is declining and retreat of the sea 
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ice is occurring earlier in the season (Frey et al. 2014).  As seasonal sea ice diminishes, a 

greater extent of open water is exposed, which creates a larger surface area for sea-air 

exchange of gases, including CO2 (e.g. Cross et al. 2014). This exposure of more open 

water because of sea ice retreat has led to an estimated increase of carbon uptake by the 

Arctic Ocean from 24 to 66 Tg C per year in the last three decades (Bates et al. 2006). 

However, the primary driver decreasing pH in the two systems is a biologically 

driven ñPhytoplankton Carbonate Saturation Stateò (PhyCaSS) that is based upon uptake 

and respiration in the water column (Bates et al. 2009, Mathis et al. 2011a, Mathis et al. 

2011b, Cross et al. 2012). Phytoplankton blooms result in uptake of dissolved inorganic 

carbon (DIC) in the mixed layer, creating an increase in pH and saturation state in surface 

waters (e.g. Cross et al. 2012). However, due to a decoupling from grazers (Bates and 

Mathis et al. 2009, Mathis et al. 2011b), phytodetritus sinks to the seafloor and results in 

elevated rates of respiration and remineralization of organic matter (Grebmeier and 

McRoy 1989), which decrease the pH and increase pCO2 in the bottom waters (Bates and 

Mathis 2009, Mathis et al. 2014). Therefore, the export of surface production that 

provides the food for a successful and biologically diverse benthic community can also 

lead to reductions in pH and saturation states that may affect production of calcium 

carbonate for shells and other structures (Mathis et al. 2011a). The PhyCaSS system 

could be intensified with the potential increases in primary production as greater open 

water areas become available due to earlier sea ice retreat (Cross et al. 2014).  

The Pacific Arctic region has naturally variable carbonate chemistry; however, 

exchange of CO2 from anthropogenic sources provides enough extra CO2 to facilitate the 

persistent seasonal undersaturations that are now being observed (Mathis et al. 2011a). 
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Early calculations indicate that without anthropogenic CO2 input, both calcite and 

aragonite would be supersaturated (ɋ>1) in the spring and the summer in the Bering Sea, 

and aragonite undersaturations would not be present at depths <100 meters, with no 

evidence for calcite undersaturation (Mathis et al. 2011a, 2011b).  

Carbonate undersaturation is present in bottom waters of the Chukchi Sea during 

the summer and fall months (Bates et al. 2009, 2013, Mathis et al. 2014, Bates 2015, 

Yamamoto-Kawai et al. 2016). Up to 75% of the production from the phytoplankton 

bloom can be exported to the bottom because of limited seasonal grazing in the water 

column (Mathis et al. 2007). The high benthic biomass supported by this organic carbon 

export (Dunton et al. 2005, Grebmeier et al. 2006a) allows these areas to also support 

higher trophic levels including diving ducks, whales, seals, and walruses (Grebmeier et 

al. 2006a).  

However, these high rates of carbon export to the bottom from the surface also 

make this region a strong seasonal sink for atmospheric CO2 (Mathis and Questal 2013). 

Annual uptake estimates for CO2 in the Chukchi Sea are as high as 53 Tg C/year (Bates 

2006, Bates et al. 2011), and because of shallow bottom depths of around 50 meters, 

anthropogenic CO2 inputs can immediately infiltrate bottom waters (Yamamoto-Kawai et 

al. 2016). The remineralization of organic matter results in decreased pH, increased 

partial pressure of CO2, and suppressed aragonite saturation states (Bates and Mathis 

2009), with the strongest suppression to date observed at the head of Barrow Canyon 

(Bates et al. 2009). Bates et al. (2009) noted that the aragonite saturation state dropped 

below the saturation horizon at depths ranging from 40-150 meters over the northern 

shelf of the Chukchi Sea. In 2010, some areas of the Chukchi Sea had pH values as low 
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as 7.75 with bottom water ɋaragonite <1 in September and October (Mathis and Questal 

2013). Similar patterns were observed at Hope Valley (Distributed Biological 

Observatory (DBO) 3 transect), a known biological hotspot, in 2012 (Yamamoto-Kawai 

2016).  

1.2 Biological Consequences of Decreased pH in the Chukchi Sea 

Although the changing carbonate chemistry in the Chukchi Sea is relatively well 

documented, it is not known how biological organisms will be affected.  Many effects of 

decreased pH are expected to be species specific. For example, pteropods and juvenile 

red king (Paralithodes camtschaticus) and tanner crabs (Chionoecetes bairdi) have 

shown negative effects to carbonate undersaturation (Comeau et al. 2009, Long et al. 

2013), but on the other hand, no specific impacts on walleye pollock (Theragra 

chalcogramma) were detected (Hurst et al. 2012), even if there are probable effects on 

the calcified prey of these fish (Hurst et al. 2012).  

 Beyond seasonal aragonite undersaturation, the Bering Sea is projected to 

experience lower ɋ values than those currently observed for many organisms by 2044, 

while the Chukchi Sea is expected to exhibit similar lower omega values as early as 2027 

(Mathis et al. 2015). Therefore, there is an urgency to understand the impacts of ocean 

acidification on the calcifying animals, particularly benthic organisms where 

undersaturation will be greatest, of the Bering and Chukchi Seas. The benthic community 

of the Chukchi, in particular, is dominated by carbonate producing bivalves and molluscs 

(Grebmeier 2012, Grebmeier et al. 2015). In other experimental studies and ecosystems, 

these taxa have exhibited reductions in growth, decreased calcification rates, and 

reductions in metabolic activity (e.g. Feely et al. 2004, Orr et al. 2005, Gazeau et al. 
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2007). I developed this study to follow-up on these earlier efforts and to further 

understanding of how these persistent, and seasonal ocean acidification events in the 

Pacific Arctic will affect the specific species found in this region and how such changes 

may impact the biology of upper trophic level animals. 

1.3 Objectives of Study  

The goal of these experiments was to test the effects of decreased pH and food 

availability on the growth and oxygen consumption of three common Pacific Arctic 

bivalve species. The three bivalves include Macoma calcarea, dominant in the southeast 

Chukchi Sea, and Astarte borealis and Astarte montagui, both dominant in the northeast 

Chukchi Sea. Additionally, I compared the allometric growth relationships between 

length and weight of the three species from the collection site ML 5-10 (Figure 2.1) in the 

NE Chukchi Sea and in the six treatment conditions from both the 2015 and 2016 

experiments. I conducted two sets of laboratory experiments on these three Pacific Arctic 

bivalve species; one was undertaken for seven weeks in the fall of 2015 and one was run 

for eleven weeks in the spring of 2016 to determine the potential effects of decreased pH 

on these organisms.  

1.4 Statement of Hypotheses  

2.1 Do elevated CO2 concentrations and therefore subsequent decreased pH in bottom 

waters alter growth and oxygen consumption in the three Pacific Arctic bivalve species? 

Hypothesis 2.1 There is no significant change in growth, measured as % change in 

both length (mm) and wet weight (g), or in oxygen consumption (mg O2/L/hour) between 

treatments for each species. 
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2.2 Will food availability play the same role in vulnerability from effects associated with 

decreased pH and ocean acidification of the three Pacific Arctic bivalves? 

Hypothesis 2.2 No significant difference exists in growth (% change in length (mm) 

and wet weight (g) or oxygen consumption (mg O2/L/hour) among bivalves of each 

species from four feeding and acidification treatments: fed/ambient, fed/acidified, non-

fed/ambient and, non-fed/acidified.   

2.3 Does the size of the bivalve affect the growth or oxygen consumption response to 

decreased pH? 

Hypothesis 2.3 Size does not affect how the growth of oxygen consumption of the 

bivalve responds to decreased pH.  

2. Material and Methods  

2.1 Sample Collection  

Bivalves used in this study were collected using a 0.1 m
2
 van Veen grab, with 32 kg 

weights, in August 2015 from the RV Norseman II. A total of 408 bivalves, including M. 

calcarea (n=87), A. borealis (n=116), and A. montagui (n=205), were collected at station 

ML5-10 (71.603 N, 162.202 W, Figure 2.1). 

Bivalves collected at sea were maintained in groups of 15 individuals in sealed 950 

mL high density polyethylene containers at approximately 3°C for the remainder of the 

cruise. Daily maintenance for the bivalves included alternating water changes, in which 

half the volume of water (approximately 500 mL) was removed every other day and 

replaced with fresh bottom water (~32.5 salinity) collected from the CTD rosette as 
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needed, together with gentle rotation of the container for approximately ten seconds to 

introduce more oxygen. At the end of the cruise, the containers were sealed with 

electrical tape, packed in insulated containers with ice packs, and flown from 

Wainwright, Alaska, back to the Chesapeake Biological Laboratory (CBL), Solomons, 

Maryland.  

At CBL, the clams were stored in a walk-in cold room set to 2.5° C. Four 75-liter 

tanks were set up with approximately 150 clams in each tank. Artificial seawater mixed 

with Instant Ocean
TM 

(Spectrum Brands, Inc., Blacksburg, Virginia) to salinity (32.5) 

similar to the water from which the bivalves were collected from and mixed in over time 

to season the new seawater. To reduce stress on the animals, temperatures were held 

between 2 - 3°C to mimic natural conditions (based on in situ CTD measurements at 

station ML 5-10 (-0.31°C, 32.19 salinity, Bering Sea winter water). The cold room was 

kept dark, except for short periods necessary for tank maintenance and feeding, consistent 

with the natural conditions in the Chukchi Sea at the depth of collection (<0.1% light 

level, Frey et al. 2011). In the first couple weeks following tank set up, I also monitored 

nitrate + nitrite and ammonia concentrations and pH using aquarium test kits from 

Aquarium Pharmaceuticals
TM 

(API Mars, Inc., McLean, Virginia). Tank maintenance 

after the initial set-up included checking salinity and temperature every other day using a 

YSI 85
TM

 multi parameter probe (YSI, Yellow Springs, Ohio) and feeding each tank with 

1 mL of Shellfish Diet 1800
TM

 (Reed Mariculture, Campbell, California).  
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2.2 Experimental Set up 

2.2. a 2015 Experiments 

In 2015 (hereafter year 1), experiments were undertaken from October 28 to 

December 16 (seven-week exposure). All three species of clams were randomly assigned 

to one of fourteen 20-liter experimental tanks. Seven tanks were held at ambient pH 

levels (8.05 ± 0.02) and seven tanks were held at a reduced pH level (7.76 ± 0.02). 

Within each experimental tank, three 475 mL high-density polyethylene (HDPE) 

containers were established, with representatives from each species of bivalve. Each 

container was filled to the rim with clean sand collected from a local Chesapeake Bay 

beach (Cove Point, Maryland), which had been rinsed with deionized water three times. 

The sand was soaked for 72 hours in Instant Ocean
TM 

seawater to acclimate it to cold 

room conditions and to allow for development of microbial flora associated with the 

incubated bivalves. Each tank held six M. calcarea, eight A. montagui, and one A. 

borealis. Tanks were covered with polycarbonate plastic covers.  

I used carbon dioxide (Airgas RD300) additions to manipulate the pH in two of 

the four 75-liter experimental tanks. Each experimental tank was monitored with a Cole-

Parmer pH electrode (Cole-Parmer model 27003-12. Cole-Parmer, Vernon Hills, Illinois) 

coupled to an Alpha pH 190 pH/ORP controller (Omega Engineering Inc., Stamford, 

Connecticut) to continuously measure the conductivity (mV) of the water within the tank. 

pH electrodes were checked for Nernstian behavior (i.e. consistent with the Nernst 

equation) before each experiment. Millivolt readings were later converted to pH using 

equation (Eq. 1), the Nernst equation for a pH electrode at 2.5°C.  
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ὴὌ
Ȣ

                                                                                                       (Eq. 1) 

Once a week, the electrodes were calibrated with a pH 3 solution using 1 L of 2.5°C 

deionized water, well-mixed with 43.83 grams of NaCl, and 1 mL of 1N HCL. Individual 

electrodes varied in performance, so a constant was determined for each electrode using 

equation (Eq. 2).  

άὠ Ὢὶέά ὩὰὩὧὸὶέὨὩυτȢχz σ ὧέὲίὸὥὲὸ                                                    (Eq. 2) 

Once the constant was calculated, I determined a set point for the electrode in the 

acidified stock tank to ensure the water stayed at the appropriate pH based upon equation 

(Eq. 3). 

ίὩὸ ὴέὭὲὸυτȢχz χȢψ ὧὥὰὧόὰὥὸὩὨ ὧέὲίὸὥὲὸ                                                 (Eq. 3) 

If the water pH went above the set point, a solenoid, wired to the controller and electrode, 

opened, allowing CO2 to flow through the one-way valve into a glass air stone to disperse 

the gas into the seawater tank until the set point was reached. Voltages for each stock 

tank were recorded once a day when water changes occurred.  

 Over the seven-week exposure period, approximately 2000 mL of seawater were 

removed from each of the fourteen 20-L experimental tanks holding the clams at the 

same time each day. New seawater, from either the control or acidified stock tanks, was 

then added back to the small experimental tanks to maintain a clean water supply, as well 

as the target treatment conditions. Once the water was changed, an Oakton General-

Purpose sealed, double-junction, epoxy body, handheld pH electrode (calibrated with the 

methods described above for the stock tank electrodes) linked to a VWR Scientific 
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(VWR, Radnor, Pennsylvania) handheld pH meter model 2000 was used to measure pH, 

by conversion of measured mV values to pH using Eq. 1. In addition to daily water 

changes and pH measurements, temperature and salinity measurements were made daily 

using the YSI85 conductivity meter. Alkalinity was later calculated using an equation 

that derived estimates from salinity (Table 2.1, Table 2.2). Clams were fed every other 

day in each tank with 0.5 mL of Shellfish Diet 1800
TM

. 

2.2.b 2016 Experiments  

In 2016 (hereafter year 2), experiments were run from January 19 to April 4, (eleven-

week duration). All three species of clams were randomly assigned to one of twelve tanks 

and a 2 x 2 factorial design with pH and food availability variation was used. Of the 

twelve 20-L tanks, three were held at ambient pH levels (8.19 ± 0.004) and fed 0.5 mL of 

Shellfish Diet 1800
TM

 every other day; three were held at ambient pH levels (8.19 ± 

0.003) and not fed over the course of the experiment; three were held at the experimental 

pH level (7.86 ± 0.01) and fed 0.5 mL of Shellfish Diet 1800
TM

 every other day; and the 

final three tanks were held at the experimental pH level (7.86 ± 0.02) and not fed over the 

course of the experiment. Within each tank, there were three 475 mL HDPE containers 

filled to the rim with sand collected from a local Chesapeake Bay beach as described for 

the previous experiment. Each tank held three M. calcarea, seven A. montagui, and two 

A. borealis. Monitoring of this experiment followed the same procedures as in the 2015 

experiments.  

2.3 Net Body Growth and Shell Measurements 

Differences in growth were assessed by determining both wet weight and length of 

each clam before and directly after both sets of experiments (2015 and 2016). 
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Specifically, following the procedure used by Schram et al. (2016) for Antarctic 

gastropods, each clam was patted dry with a paper towel and then weighed to the nearest 

hundredth of a gram. Percent change (%ȹ) in wet weight over the course of the 

experiment(s) was calculated using equation (Eq. 4).  

% change (ȹ) = 
    

  
 * 100                                           (Eq. 4) 

 Similar steps were taken to document changes in clam shell length using Capri 

15-cm stainless steel digital calipers to measure the length of individual clam shells to the 

nearest hundredth of a mm [maximum distance along the anterior-posterior axis as 

described by Gaspar et al. (2001)] before and directly after each experiment (Figure 2.2). 

A similar percent change (%ȹ) formula to (Eq. 4) was applied to length measurements.  

2.4 Oxygen Consumption 

Changes in bivalve oxygen consumption were used as an indicator for metabolic 

activity. Measurements were made using four clams each day for the last nine days 

(December 8 - December 16) of the experiment in 2015, and four clams a day for the last 

twelve days (March 20 - April 1) of the experiment in 2016. Oxygen consumption was 

measured using a Pyroscience FireStingO2 Optical Oxygen Meter (Pyro Science, Aachen, 

Germany) using the vendor-sourced software for data collection. The meter had 

attachments for four probes, each of which I inserted into individual jars that held one 

clam each. In 2015, oxygen consumption was measured in six, randomly chosen clams 

from each species/pH treatment combination (n=36), and in 2016 oxygen consumption in 

four, randomly chosen clams from each species/pH/food treatment combination (n=48) 

were measured.  
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These oxygen respiration measurements were prepared as follows: Individual 

clams were placed into 100 mL jars filled to the top with seawater from either the control 

or treatment pH tank and were capped tightly to ensure they were airtight. The probes 

measured dissolved oxygen in mg/L. Because measurements were for dissolved oxygen 

in water, the probes were calibrated at the beginning of each day to the ñ1 point in humid 

air/waterò setting, as well as a set temperature of 2.5ÁC, measured by an attached 

temperature sensor, and a salinity of 32.5. Once calibrated, each of the four oxygen 

probes was inserted into small holes drilled into each jarôs lid. One jar lid had two drill 

holes, one for the oxygen probe, and one for the external temperature probe. Dissolved 

oxygen concentrations (mg/L) were recorded every two minutes over a 24-hour period 

and the volume of water in each jar was used to convert to an oxygen utilization rate (mg 

O2/L/hour). These measurements, beginning with calibration, were repeated every day for 

either nine or twelve days.  

Oxygen use over each 24-hour period was plotted as a graph of linear decay (of 

dissolved oxygen); a linear regression and slope using RStudio® 

(https://www.rstudio.com/) was calculated (Figure 2.3). In several cases (14% in 2015 

and 10% in 2016), there was not a linear decay of dissolved oxygen, and those data were 

not used in further analyses because of the potential for sampling artifacts. The slope of 

the regression was multiplied by the volume of water in the 100 mL jars and divided by 

the time the clams were held in the jar to determine the rate of oxygen consumption (O2 

mg/L/hour). Differences in rates among species and treatments were analyzed using 

statistical methods described below.  
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2.5 Length Weight Relationships and Growth Characterizations  

The wet weight and length measurements determined before each experiment were 

used to determine allometric equations for the three species. Both the before and after 

length (L)-weight (W) relationships were described first with Eq. 5 and then expressed in 

a linear form using Eq. 6, where a = intercept and b = slope. 

ὡ ὥὒ                                                                                                                                     (Eq. 5) 

ὒέὫ ὡ  ὰέὫ ὥ  ὦ ὰέὫ ὒ                                                                                      (Eq. 6) 

An isometric relationship was defined as b=3, while slopes less than three were 

considered to be negatively allometric and slopes greater than three were considered to be 

positively allometric. 

2.6 Statistical Analyses 

All statistical analyses used RStudio® statistical software (https://www.rstudio.com/). 

Data (individual 20-L tanks, not individual clams) were tested for normality using the 

Shapiro-Wilk test. In 2015, the t-test and Kruskal-Wallis rank sum test were used to 

assess differences between pH treatments for percent change in length and wet weight, as 

well as oxygen consumption. In 2016, when food availability was added as a variable, all 

measured parameters were analyzed using a two-way analysis of variance (two-way 

ANOVA). The residuals of each two-way ANOVA were tested for normality using the 

Shapiro-Wilk test.  

Allometric growth relationships were determined using linear regressions of the log 

transformed length and wet weight data in order to calculate a slope and a 95% 

confidence interval (CI) of the slope for each experimental treatment and species (e.g. M. 

https://www.rstudio.com/
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calcarea pre-experiment, post experiment control, post experiment acidified, etc.). If a 

slope value (b) of three fell between the upper and lower bound of the 95% confidence 

interval, the clam was classified as showing isometric growth (b=3, see section 2.5). If 

the confidence interval bounds for the slope fell below three (e.g. 2.4-2.9), the growth 

was classified as negatively allometric; and if the confidence interval bounds fell above 

three (e.g. 3.1-3.4), the growth was classified as positively allometric.  

3. Results 

3.1 Treatment conditions  

 Average tank conditions that were measured daily during the seven and eleven 

week exposure time, including pH, salinity, and temperature, were calculated for both 

control and acidified tanks from the 2015 experiments (Table 2.1) and the 2016 

experiments (Table 2.2). Because salinity data was readily measurable, I used salinity and 

estimated total alkalinity (TA) obtained from the Chukchi Sea salinity-TA regression 

equation from Yamamoto-Kawai et al. (2016) in order to determine saturation of the 

carbonate system. Although I used Instant Ocean®, and not water from the Chukchi Sea, 

some water collected in the Chukchi Sea was mixed into the experimental containers and 

the temperature and salinity were comparable to natural conditions in the Chukchi Sea. I 

used the salinity, temperature, pH, and TA values estimated from the published 

regression equation, and inserted these values into the CO2sys spreadsheet (Pierrot et al. 

2006) to determine pCO2 and the saturation states for both calcite and aragonite.  
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3.2 Net Body Growth and Shell Measurements 

3.2a 2015 experiments 

Twelve clams in the control and acidified treatments died, including five M. 

calcarea from both control and acidified treatments, and two A. montagui held in the 

control treatment. 

 A decrease in length was observed in M. calcarea held in both control (-0.72 mm 

± 1.42) and acidified (-2.13 mm ± 3.42) treatments. However, statistical analysis did not 

indicate that these differences between control and experimental treatments were 

significant (t-test, p=0.341, Figure 2.4). In contrast, with the exception of A. montagui 

kept in the control treatment, the two Astarte species, showed an average increase in 

length after the seven-week exposure. A. montagui from the acidified treatment averaged 

an increase in length of 0.38 mm ± 1.67, whereas A. borealis from the control treatment 

averaged an increase in length of 0.10 mm ± 1.41. A. borealis maintained in the acidified 

treatments averaged a length increase of 0.30 mm ± 0.60 over the course of the 

experiment. No significant differences between treatments were observed in the Astarte 

species (A. montagui: Kruskal-Wallis, p=0.57; A. borealis: t-test, p= 0.74, Figure 2.4, 

Table 2.3).  

 In addition to the aggregate analysis present above, I separated clams by size 

classes (Figure 2.5). M. calcarea and A. montagui were split into two groups, 10-19.99 

mm and 20-29.99 mm, while A. borealis was split into two groups of 20-29.99 mm and 

30-39.99 mm. In the control treatment, the smaller sized M. calcarea averaged a -2.11 

mm ± 3.67 decrease in length, and those held in the acidified treatment averaged a -1.43 
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mm ± 3.55 decrease in length. The larger individual category, while not showing 

significant differences in length changes between the control and experimental treatments 

(two-way ANOVA, F= 2.8646, p= 0.1035), displayed an increase (control: 0.31mm ± 

1.77) and a lesser degree of decline (acidified: -0.35 mm ± 3.55) in length, providing 

potential evidence of dissolution.  

The A. montagui smaller size class showed a decrease in length (control: -0.35 

mm ± 2.28; acidified: -0.25 mm ± 1.74), while the larger organisms had a lesser degree of 

decline (control: -0.05 mm ± 0.68) and an increase in length (acidified: 0.77 mm ± 2.12). 

Again, there was no significant difference between size classes (two-way ANOVA, 

F=0.9323, p=0.34) or treatments (F=0.4526, p=0.51). A. borealis followed the opposite 

trend as the other two species. The small size class (20-29.99) displayed an increase in 

growth in both the control (1.24 mm ± 0.91) and acidified treatment (0.81 mm ± 0.26), 

while the larger clams (30-39.99 mm) had a decrease in length in both treatments 

(control: -0.75 mm ± 1.07; acidified: -0.09 mm ± 0.46). Differences in length were not 

significant between treatments (two-way ANOVA, F=0.2289, p=0.64); however, length 

changes between the size classes were significantly different (F=12.1472, p=0.006).  

Changes in wet weight generally followed the same patterns as changes in length. 

M. calcarea decreased in wet weights after seven weeks (Control: -6.39 g ± 6.25, 

Acidified: -8.12 g ± 6.29), and all Astarte species showing an increase in wet weight (A. 

montagui: Control: 0.44 g ± 4.58, Acidified: 3.44 g ± 8.37; A. borealis: Control: 0.68 g ± 

0.88, Acidified: 1.00 g ± 0.91). No significant differences were found between treatments 

in wet weight for any of the species (t-test, all p-values > 0.05, Table 2.3, Figure 2.4). 
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3.2b 2016 experiments 

Only three clams died during the 2016 experiments; all of them were M. calcarea. 

One was held in the AF treatment, one in the ANF treatment, and one in the CNF 

treatment.  

 The experimental and control treatments are summarized in Table 2.3. M. 

calcarea only showed an increase in length in the CF treatment (0.55 mm ± 0.34), but 

showed a decrease in length after eleven weeks in CNF (-0.98 mm ± 0.58), AF (-0.52 mm 

± 0.68), and ANF (-0.25 mm ± 0.31). Two-way ANOVAs indicated the interaction of 

food and pH generated one significant effect (F=9.65, p=0.02). M. calcarea held in CF 

tanks had a higher percentage change in length than those held in control tanks that were 

not fed (Figure 2.6). Only animals held in the CNF treatment averaged a decrease in wet 

weight of -0.45 g ± 4.76. All other treatments showed an increase in wet weight (CF: 2.15 

g ± 0.62; AF: 4.12 g ± 3.53; ANF: 2.25 g ± 0.28). No significant difference was found for 

two-way ANOVA tests among any of the treatments for wet weight of M. calcarea 

(Figure 2.6, Table 2.3).  

 A. montagui length and wet weight changes were not significantly different for 

treatment or control (Figure 2.6, Table 2.3). All treatments, for both variables, except 

one, showed an increase. The average length measurement in the AF treatment was the 

only one to show a decrease (-0.04 g ± 0.53). Average lengths for CF, CNF, and ANF 

treatments were 0.30 mm ± 0.14, 0.50 mm ± 0.34, and 0.13 mm ± 0.16, respectively. Wet 

weight increased in all four treatments (CF: 0.94 g ± 0.29, CNF: 0.45 g ± 0.27, AF: 1.54 

g ± 3.31, ANF: 1.61 g ± 1.30).  
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 A significant effect of pH was observed for the change in length of A. borealis 

(two-way ANOVA, F= 7.9032, p=0.02, Figure 2.6, Table 2.3). All animals held in 

control treatments regardless of food treatment displayed an increase in growth (CF: 0.56 

mm ± 0.30; CNF: 1.06 mm ± 0.66), while those held in acidified treatments had a 

decrease in growth (AF: -0.14 mm ± 0.85; ANF: -0.23 mm ± 0.51) after the eleven-week 

exposure. All treatments demonstrated a decrease in average wet weight at the end of the 

experiments, but no significant difference was noted (CF: -0.11 g ± 0.56; CNF: -0.33 g ± 

0.33; AF: -0.21 g ± 0.09; ANF: -0.75 g ± 0.84) (Figure 2.6, Table 2.3).  

 I ran the same size class analysis as described in the 2015 experiments (Figure 

2.7). Because there were more treatments, a few clams did not have any representatives 

in specific size classes. For example, there were no M. calcarea specimens in the 20-

29.99 mm size class in the CNF treatment, and no A. borealis in the same size class in the 

CF treatment. Additionally A. borealis in the smaller size class only had one 

representative in both the AF and ANF treatments. Just as in 2015, M. calcarea and A. 

montagui were split into two groups, 10-19.99 mm and 20-29.99 mm, while A. borealis 

was split into two groups of 20-29.99 mm and 30-39.99 mm. In the control treatment M. 

calcarea of the smaller size averaged a decrease of -0.005 mm ± 0.79 in the fed 

treatment, and -0.98 mm ± 0.58 in the non-fed treatment. Individuals held in the acidified 

treatment averaged a decrease in length of -0.90 mm ± 1.88 in the fed treatment, and an 

average decrease of -0.17 mm ± 0.32 in the non-fed treatment. Larger individuals 

displayed a similar pattern as those from 2015, in that the changes in length of the larger 

individuals had a larger range than the smaller clams (CF: 1.06 mm ± 0.65; CNF: no 

representatives; AF: -0.36 mm ± 0.75; ANF: -0.26 mm ± 0.40), but overall there was not 



 
 

49 

 

a significant difference among treatments (two-way ANOVA, F=1.7156, p=0.22) or size 

classes (F=0.8578, p=0.37).  

 In the 2016 experiment, A. montagui showed an increase in length in all but two 

treatments. The smaller and larger individuals held in the AF treatment (small: -0.09 mm 

± 0.64; large: -0.10 mm ± 0.31) were the only two where a decrease in length was 

observed. The rest of the treatments in both size classes showed positive growth (small: 

CF: 0.51 mm ± 0.19, CNF: 0.55 mm ± 0.60, ANF: 0.07 mm ± 0.15; large: CF: 0.13 mm ± 

0.11, CNF: 0.20 mm ± 0.19, ANF: 0.22 mm ± 0.55). There was no significant difference 

among treatments (two-way ANOVA, F=1.7132, p= 0.20) or size classes (F=0.7995, p= 

0.38).  

A. borealis had no representatives from the CF treatment in the small size class 

(20-29.99 mm) and only one representative from the AF (1.44 mm) and ANF (-0.44 mm) 

treatment in the same size class. The CNF treatment in the small size class averaged an 

increase in length of 1.74 mm ± 1.11. The larger size class showed an increase in length 

in the two control treatments (CF: 0.56 mm ± 0.30; CNF: 0.84 mm ± 0.60) and a decrease 

in growth in the two acidified treatments (AF: -0.34 mm ± 0.50; ANF: -0.25 mm ± 0.52). 

Both treatment (two-way ANOVA, F= 5.2515, p=0.02) and size (F= 5.4151, p=0.04) 

differences were significant. The treatment significance matches the significance noted in 

the change in length in A. borealis with all the size classes combined. The larger 

specimens had smaller overall increases in changes in length than the smaller 

representatives. While differences between treatment and size classes were not significant 

in the 2015 data, there was a similar trend as was the case with the 2016 data. Smaller 

individuals had a larger percent increase in growth, while the larger individuals showed a 
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smaller percent increase in growth. These results suggest that the smaller A. borealis may 

be less vulnerable to acidified waters than larger individuals.  

3.3 Oxygen Consumption 

3.3a 2015 experiments 

 For all species, oxygen consumption (mg/L/hour) was not significantly different 

between treatments (t-test, all p-values > 0.05, Table 2.3). M. calcarea held in the control 

treatment averaged 5.59x10
-7

 ± 4.51 x10
-7

 mg/L/hour, while those kept in the acidified 

treatment averaged 3.99x10
-7

 mg/L/hour ± 4.32x10
-7

 (Figure 2.8). A. montagui 

maintained in both the control and acidified treatments had similar average oxygen 

consumption rates, 1.90x10
-7

 mg/L/hour ± 1.05x10
-7

 and 2.02x10
-7

 mg/L/hour ±    

9.28x10
-8

, respectively (Figure 2.8). A. borealis kept in the control treatment averaged 

2.74x10
-7

 mg/L/hour ± 2.30, and those maintained in the acidified treatment averaged 

2.89x10
-7

 mg/L/hour ± 1.96 (Figure 2.8).  

 Oxygen consumption and weight data were log transformed. Oxygen 

concentrations were modified so oxygen consumption was a positive number before 

transformation in order to complete the log transformation. All species in all treatments 

show similar linear patterns in oxygen utilization (Figure 2.9). The A. borealis in the 

acidified treatment were slightly, but not significantly larger than the rest of the species 

used, but had similar oxygen consumption rates.  

3.3b 2016 experiments 

 Average oxygen consumption for M. calcarea varied from 4.26x10
-8

 to 2.28x10
-7

 

mg/L/hour, and showed no significant difference among the four treatments (two-way 
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ANOVA, F= 2.78, p>0.05, Table 2.3, Figure 2.10). The two Astarte species also showed 

no significant difference in oxygen consumption among pH and feeding treatments (two-

way ANOVA, p>0.05, Table 2.3). Rates averaged between 3.00x10
-8

 to 1.86x10
-7

 

mg/L/hour for A. montagui, and between 1.27x10
-7

 and 2.81x10
-7
 mg/L/hour for A. 

borealis (Figure 2.10).  

Oxygen consumption and weight were again log transformed as described above 

(i.e. the absolute values of oxygen consumption rates were used) and plotted (Figure 

2.11). Again, all species in all treatments show similar linear oxygen utilization rates.  As 

in 2015, the A. borealis specimens were larger than the other two species, and clustered 

away from the other species consumption rates. However, this species still appears to 

follow the same general pattern of increasing oxygen consumption with increasing size as 

was observed in the other two species.  

3.4 Growth allometry 

3.4a 2015 experiments 

 Allometric growth equations were calculated for all species based upon both pre-

experimental and post experimental measurements (Table 2.4). The M. calcarea collected 

from station ML 5-10 collectively exhibited negative allometric growth (pre-experiment). 

M. calcarea held in both the control and ambient treatment also displayed negative 

allometric growth (post-experiment) (Figure 2.12). Both of the Astarte species showed 

positive allometric growth in measurements directly after collection (pre-experiment) 

(Figure 2.13, 2.14). Those kept in the control treatment displayed isometric growth, 

differing from what was observed in the field. Astarte maintained in the acidified 



 
 

52 

 

treatment also demonstrated positive allometric growth, matching the pre-experiment 

observations. 

3.4b 2016 experiments 

 Bivalves used in the 2016 experiments were part of the same collection at ML 5-

10 as those used in the 2015 experiments; therefore, the pre-experiment relationships are 

the same as described above. The post experiment characterizations showed isometric 

growth in all species and all treatments (Table 2.4, Figure 2.12-2.14).  

4. Discussion  

Ocean acidification events in bottom waters in the Pacific Arctic shelf waters 

result from loss of ice cover that in turn can result in primary production blooms. These 

factors influence the supply of organic matter to the benthos. Uncertainties concerning 

how primary production and zooplankton grazing are changing introduce uncertainties as 

to how ocean acidification events will change and influence this region and its associated 

biology. Changes in physical factors and seasonal ice cover have the potential to 

reorganize the Pacific Arctic ecosystem (e.g. Grebmeier and McRoy 1989, Grebmeier, 

2006a, 2006b). If the system becomes a pelagic-dominated system (Grebmeier et al. 

2006a), the question arises whether natural variability of pH in the bottom waters will 

stabilize, or if the increases in anthropogenic CO2 in the atmosphere will eventually cause 

undersaturation in the entire water column.  

The results of this study indicate that Arctic bivalves are likely not strongly and 

directly affected by the episodic levels of ocean acidification expected in Arctic bottom 

waters over the shelves in the coming years. In experiments conducted in two separate 
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years, over time scales relevant to the expected exposure, I document only marginal 

effects of ocean acidification on growth in three species of bivalves. One species Astarte 

borealis showed a decrease in percentage change of length under acidified conditions, but 

only after eleven weeks of exposure, suggesting that longer exposure times may be 

required for negative effects to be apparent. Some comparisons can be made to other 

polar systems. For example, Schram et al. (2016) found very minimal negative effects of 

ocean acidification on two Antarctic gastropod species. Despite using two different 

molluscs, the Schram et al. (2016) study is comparable to ours because they used a 

similar exposure time, seven and six weeks, respectively, a short amount of time in the 

long life spans of the organisms.  

I examined the effects of decreased pH on two size classes of adults in each 

species. Results from both experiments showed no significant difference in response 

between the two size classes of M. calcarea or A. montagui, however the smaller 

individuals did have a greater percentage decrease in length than the larger ones, 

suggesting that younger and smaller individuals may be more negatively affected by 

acidified waters. However, larger A. borealis individuals had a larger percent decrease in 

growth than the smaller individuals, suggesting that the larger individuals of this species 

may be more vulnerable than smaller individuals, the opposite case of the other two 

species. Ultimately, there may be an optimal shell size for maintenance in undersaturated 

seawater that differs among species. Although there was only one significant difference 

noted in the size class analysis (A. borealis 2016 experiments), it does appear that size 

may play a role in determining vulnerability to acidification. Therefore, future 
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experiments would be warranted to address effects on multiple size classes of the same 

species of bivalves in order to determine the most vulnerable stage in growth.  

I used allometric growth relationships as an additional metric for further 

evaluating the effects of acidified seawater on the health of the three species. The slope of 

the linearized allometric relationship varies by species, and can also fluctuate among 

different conditions a given species may be exposed to throughout the year. Therefore, 

the relationship should be determined empirically for each species and system of interest, 

and not universally applied (Glazier 2005, Seibel 2007).  

The experiments conducted in 2015 showed negative allometric growth, meaning 

length increased faster than weight, in the pre- and post-experiment measurements for M. 

calcarea, both in the control and acidified treatments. However, the two Astarte species 

held in control treatments displayed isometric growth only following the experiment, 

while pre-experiment measurements and measurements from the acidified treatment 

exhibited positive allometric growth, where weight increases faster than length. I 

collected these organisms in the late summer (August 2015), when acidification has been 

observed in the Chukchi Sea; therefore, the Astarte I collected could have already been 

exposed to lower pH conditions pre-collection, potentially explaining why the initial 

growth equations and the equations from those individuals held in the acidified aquaria 

displayed the same positive allometric growth pattern. Astarte held in the control aquaria, 

however, may have had sufficient resources to allocate more energy to growth that was 

isometric in nature, whereas those in the stressed, lower pH aquaria increased weight 

faster than length.  
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In 2016 post- experiment allometric determinations, all species from all four 

treatments showed isometric growth. These determinations all differ from the pre-

experiment values in which M. calcarea displayed negative allometric growth, and the 

two Astarte species displayed positive allometric growth. The replication of each species 

in each aquaria during this set of experiments was low (three M. calcarea, seven A. 

montagui, and two A. borealis). With little replication, the confidence intervals generated 

by the slope calculations were wide and therefore all of them overlapped with a slope 

value of three (Table 2.4). The low replication and subsequent wide confidence intervals 

are likely the reason why all of the relationships were classified as isometric in the 2016 

post-experiment analysis. Additionally, clams used in 2016 experiments had been stored 

in stock aquaria in the cold room since collection in August of 2015, so they may have 

acclimated to the cold room conditions, including the constant food supplied while 2015 

experiments were conducted.  

M. calcarea demonstrated negative allometric growth in the pre and post 2015 

experiment calculations, but those held in the acidified treatment displayed a much 

shallower slope (b value) than those from the field and those kept in control conditions. 

The length of these clams increase quickly, with very little change to weight. This may be 

consistent with a negative effect of acidified seawater because length measurements were 

calculated by measuring the longest point of each shell; therefore, faster increases in 

length than weight could suggest allocation of resources and energy to shell production, 

but at a cost to maintaining growth of internal structures that add to the overall weight of 

the organism. While there was no significant difference between treatments in the percent 
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change in length or weight, the relationship between the two parameters clearly differs 

between treatments.  

This study used only adult bivalves, but life history stage responses are likely to 

vary (Byrne 2011). The larval stage is thought to be the most vulnerable for many species 

(Kurihara et al. 2004, 2004b, Dupont et al. 2008, Kurihara 2008, Brennand et al. 2010, 

Byrne 2011). Negative effects, including increased mortality, have been observed in the 

larvae of several organisms including sea urchins, copepods, Pacific grass shrimp, and 

brittle stars (Kurihara et al. 2004, 2004b, Dupont et al. 2008, Kurihara 2008, Brennand et 

al. 2010). All three bivalve species used in this study have pelagic larvae. Therefore, 

when discussing adults versus larvae, it is noteworthy that lower pH values and 

undersaturations are observed primarily in bottom waters, while at sites of high primary 

production, surface pH values are higher in the summer as DIC is removed. As a result, 

larvae may not be exposed to acidified conditions for as many months as the juveniles 

and adults are exposed to undersaturation on the bottom (Bates and Mathis 2009, Mathis 

et al. 2011a, Mathis et al. 2011b, Cross et al. 2012). In addition to studying the direct 

effects to the larvae, few studies, particularly in the polar regions, have investigated the 

effects of ocean acidification on larvae produced by adults that have been exposed to 

acidified conditions (Suckling et al. 2014). Studies that test larval survival under 

undersaturation in the spring, when spawning occurs, could determine if these conditions 

are detrimental.  

Several studies have shown ocean acidification has synergistic effects with the 

other main, contemporary threat to marine organisms, warming temperatures, but the 

interaction between the two is widely unknown (Walther et al. 2010, Harvey et al. 2013). 
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Harvey et al. (2013) conducted a meta-analysis of 107 peer reviewed articles examining 

the collective effects of acidification and warming and found that the combination of the 

two stressors led to a stronger response, both positive and negative, than exposure to only 

one of these stressors. Warming alone has been shown to lead to increased metabolic 

costs (OôConnor et al. 2009), as well as increased prey consumption (Sanford 1999). 

These measurements of oxygen consumption presented here did not result in significant 

responses to decreased pH or food manipulations, but warming water temperatures, 

which were not independently tested in this study, may introduce responses 

synergistically with changes in food availability and pH. If warming waters increase food 

consumption, the projected potential implications for decreases in phytoplankton blooms 

include an additional stressor to the system in the form of food availability. The Harvey 

et al. (2013) meta-analysis noted that mollusc growth was affected negatively when both 

warming and acidification co-occur. Therefore, the negative effects observed here from 

acidification alone to growth in A. borealis, suggest that future studies could profitably 

examine the combined effects of warmer temperatures, decreased pH, and limited food 

supply; especially because the temperatures at the sediment water interface affect 

metabolic rates, which in turn affects growth and remineralization intensity (Grebmeier et 

al. 2015). Because these organisms are not solely exposed to one changing condition, it is 

important to look at the interactions among all of the likely changes.  

Decreased pH in the bottom waters in the Chukchi Sea currently occurs in the 

summer and fall (Mathis and Questal 2013, Yamamoto-Kawai et al. 2016). With 

changing sea ice dynamics, the timing and intensity of phytoplankton blooms will likely 

change (Grebmeier et al. 2015), with both increases and decreases in primary production 
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potentially possible. Primary production may increase because there will be more open 

surface area for penetration of sunlight (Arrigo et al. 2008, 2011). Such an increase in 

primary production could lead to more organic carbon exported to the benthos, 

potentially leading to more remineralization and additional seasonal decreases in pH in 

bottom waters.  

Scenarios for decreases in primary production due to timing changes for ice edge 

blooms are also possible (Grebmeier et al. 2006a). While more surface area will be 

exposed with less ice extent and earlier retreating ice, warming and freshening of the 

upper seawater layers may increase stratification, and prevent a ventilation of surface 

waters with nutrient resupply from bottom waters.  A reduction in primary production 

will decrease the organic carbon deposition to the benthos and thus decrease benthic 

remineralization, potentially limiting how low pH can drop in the bottom waters 

(Grebmeier et al. 2006a). However, because the shelf system is shallow, bottom waters 

could still remain undersaturated with respect to carbonate for much of the year as 

described previously, despite potential decreases in remineralization. A decreased 

primary production scenario could also cause surface pH to decline as uptake by smaller 

phytoplankton blooms may not be able to keep up with the increased air-sea fluxes of 

atmospheric CO2.  

These potential changes to light and nutrient availability, as well as the ongoing 

warming and decreases in sea ice extent, not only affects what will happen to primary 

production, but also has implications for zooplankton. Earlier warming would increase 

zooplankton growth, abundance, and grazing (Coyle et al. 2007), limiting the quality and 

quantity of organic matter exported to the benthos.  
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Changes in the timing of the phytoplankton blooms could also potentially change 

the timing of ocean acidification events. For example, if the occurrence of fall blooms 

increase due to wind mixing of open water when sea ice was formerly present, there is 

the potential for ocean acidification events to extend into the winter months, when there 

is no newly produced food. As demonstrated in this current study, food availability can 

affect the growth of bivalves. M. calcarea displayed a significant difference in percent 

change in length in aquaria with food additions versus aquaria where food was not added, 

with those fed showing an increase in length, and those not fed showing a decrease in 

length. Therefore, if exposure to acidified conditions expands into a time when food is 

limited, the negative effects of limited food could be intensified by the presence of low 

pH values, thus adding to the complexity of understanding how these organisms will 

respond to changing acidity. Future research efforts should include experimentation on 

bivalves collected at different times of the year, i.e. spring, summer, fall, and winter, to 

test how pre-conditioning to acidified conditions may alter responses.  

While most of the results from both sets of experiments did not indicate 

significant effects from pH and food treatments, there were a few significant changes or 

differences observed that confirm that changes to organisms in response to decreased pH 

and ocean acidification will be species specific, and that some negative effects are being 

observed on bivalves in the Pacific Arctic. A. borealis demonstrated decreased length in 

response to an eleven-week exposure in acidified treatments regardless of food 

availability. M. calcarea displayed decreased length in aquaria with food limitation 

versus aquaria in which food was available, suggesting that food availability plays a role 

in their shell growth, and if bloom timing and location changes, M. calcarea may be more 
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susceptible to acidification impacts even though no effects were noted in these 

experiments. I assume here that length of exposure to decreased pH is likely to be one of 

the factors controlling negative effects. These organisms are exposed to seasonally 

variable conditions, but if pH values decline below their natural range and exposure time 

increases due to changes in phytoplankton blooms and ice conditions as described above, 

it is likely the minimal effects observed in these experiments will increase in more 

prominent ways.  

5. Conclusions 

As anthropogenic emission of CO2 continues to increase, the effects of decreased 

pH and other subsequent changes to ocean chemistry from increased CO2 may become 

more pronounced and critical. Both the Bering Sea and the Chukchi Sea display naturally 

varying pH conditions because of mechanisms such as the PhyCaSS interactions and 

remineralization at depth (e.g. Bates et al. 2009, Mathis et al. 2011a, Mathis et al. 2011b, 

Mathis and Questal 2013, Yamamoto-Kawai et al. 2016). However, estimates based upon 

current atmospheric concentrations of CO2 indicate that without anthropogenic 

contributions both calcite and aragonite would be supersaturated in the spring and the 

summer in the Bering Sea, and aragonite undersaturation would not be present until a 

depth of 100 meters at the shelf break, with no sign of calcite undersaturation (Mathis et 

al. 2011a, 2011b). As human induced changes continue to occur, monitoring of responses 

by calcifying organisms should continue because the system is expected to move out of 

the natural range of the carbonate system parameters [i.e. saturation state (ɋaragonite= 1.2 ± 

0.1), pH, etc.] as early as 2027 (Mathis et al. 2015), and once this happens, the responses 

by organisms will likely become more significant and obvious.  
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 I quantified how bivalves common in the Chukchi Sea would respond to these 

documented decreases in pH (Mathis and Questal 2013, Yamamoto-Kawai et al. 2016). 

Several determinations were made of bivalve growth, including percent change in length 

and wet weight, as well as determination of allometric growth classifications. These 

measurements were coupled with oxygen consumption rates to assess the vulnerabilities 

of these organisms under acidified treatments. Since bivalves are important prey for 

higher trophic benthivores, including walrus, negative impacts on the prey base could 

impact larger portions of the food chain. As increases in atmospheric CO2 are expected to 

continue, understanding the consequences of changing carbonate chemistry is crucial, 

especially in regions like the Pacific Arctic, where duration and intensity of such events 

are expected to continue to increase in the coming decades and have impacts much 

sooner than other regions of the world.  
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Tables  
 

Table 2.1 Water column parameters (mean±1 SD) measured from the CTD in 2015 in the NE Chukchi Sea as 

part of the AMBON cruise (temperature and salinity) as well as control and treatment pH used in the 

experiments. *Total alkalinity (TA) was determined from salinity with the regression equation from Yamamoto-

Kawai et al. 2016. Salinity, temperature, pH, and total alkalinity were inserted into the CO2sys spread sheet to 

calculate pCO2,, calcite saturation state (ɋ), and aragonite saturation state (ɋ). Key: Control Fed=Control 

conditions; Acidified Fed=Experimental, lower pH conditions. 

 

 

 

 

 

 

 

  

Parameter 

CTD  

Bottom  

Water 

Control Fed 

(mean ±SD) 

Acidified Fed 

(mean ±SD) 

pH 

 

8.05 ± 0.02 7.76 ± 0.02 

Temperature (°C) -0.31 2.51 ± 0.09 2.53 ± 0.06 

Salinity (psu) 32.19 32.51 ± 0.11 32.64 ± 0.08 

 

  

  TA*  (µmol/kg SW) 

 

2295.91 2303.61 

pCO2*  (µatm) 

 

388.9 801.56 

Calcite ɋ* 

 

2.37 1.49 

Aragonite ɋ*   1.29 0.81 
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Table 2.2 Water column parameters (mean ±1 SD) measured from the CTD in 2015 in the NE Chukchi Sea as 

part of the AMBON cruise(temperature and salinity) as well as control and treatment pH used in the 

experiments. *Total alkalinity (TA) was determined from salinity with the regression equation from Yamamoto-

Kawai et al. 2016. Salinity, temperature, pH, and total alkalinity were inserted into the CO2sys spread sheet to 

calculate pCO2, calcite saturation state (ɋ), and aragonite saturation state (ɋ). Key: Control F= Control 

conditions fed during the course of the experiment; Control NF= Control conditions not fed over the course of 

the experiment; Acidified F= Experimental, lower pH conditions fed over the course of the experiment; Acidified 

NF= Experimental, lower pH conditions not fed over the course of the experiment.  

Parameter 

CTD 

Bottom 

Water 

Control F 

(mean ±SD) 

Control NF 

(mean ±SD) 

Acidified F 

(mean ±SD) 

Acidified NF 

(mean ±SD) 

pH 

 

8.19 ± 0.004 8.19 ± 0.003 7.86 ± 0.01 7.86 ± 0.02 

Temperature (°C) -0.31 2.59 ± 0.11 2.55 ± 0.05 2.56 ± 0.05 2.50 ± 0.08 

Salinity (psu) 32.19 32.61 ± 0.26 32.78 ± 0.13 32.60 ± 0.08 32.53 ± 0.06 

  
        

TA* (µmol/kg SW) 

 

2301.83 2311.9 2301.24 2297.09 

pCO2* (µatm) 

 

271.44 272.28 627.66 626.55 

Calcite ɋ* 

 

3.17 3.19 1.6 1.59 

Aragonite ɋ* 
 

1.99 2 1 1 
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Table 2.3 Results of statistical testing (t-test, Kruskal Wallis, two-way ANOVA) of the effects of decreased pH and controlled food supply for M. calcarea, A. 

montagui, and A. borealis. Significant differences are shown in bold type.  

Trait Year Species Source d.f. Mean Square 

F or 

equivalent p Test 

Length  

(% Change) 2015 M. calcarea pH 1 

  

0.341 T test 

  

A. montagui 

 

 

 

11.637 0.5653 Kruskal Wallis 

  

A. borealis 

 

 

 

8.1059 0.7432 T test 

    

 

    Weight  

(% Change) 2015 M. calcarea pH  

 

12 0.6144 T test 

  

A. montagui 

 

 

 

9.3027 0.4272 T test 

  

A. borealis 

 

 

 

11.99 0.5269 T test 

    

 

    Oxygen 

Consumption 

(mg/L/hour) 2015 M. calcarea pH  

 

8.77 0.5656 T test 

  

A. montagui 

 

 

 

9.84 0.8477 T test 

  

A. borealis 

 

 

 

3.76 0.9285 T test 

         Length  

(% Change) 2016 M. calcarea pH 1 0.09365 0.3713 0.55922 2-way ANOVA 

  

A. montagui 

 

1 0.36207 3.2662 0.1083 2-way ANOVA 

  

A. borealis 

 

1 2.96043 7.9032 0.0228 2-way ANOVA 

  

M. calcarea Food 1 1.19164 4.4242 0.06148 2-way ANOVA 

  

A. montagui 

 

1 0.10238 0.9236 0.3647 2-way ANOVA 

  

A. borealis 

 

1 0.11807 0.3152 0.5899 2-way ANOVA 

  

M. calcarea pH x food 1 2.43414 9.65 0.01452 2-way ANOVA 

  

A. montagui 

 

1 0.00079 0.0071 0.9349 2-way ANOVA 
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A. borealis 

 

1 0.25725 0.6868 0.4313 2-way ANOVA 

         Weight  

(% Change) 

 

M. calcarea pH 1 16.4314 1.8446 0.2115 2-way ANOVA 

  

A. montagui 

 

1 2.3282 0.7275 0.4185 2-way ANOVA 

  

A. borealis 

 

1 0.1991 0.7014 0.4266 2-way ANOVA 

  

M. calcarea Food 1 15.0258 1.6868 0.2302 2-way ANOVA 

  

A. montagui 

 

1 0.1352 0.0422 0.8423 2-way ANOVA 

  

A. borealis 

 

1 0.4254 1.4986 0.2557 2-way ANOVA 

  

M. calcarea pH x food 1 0.4038 0.0543 0.8367 2-way ANOVA 

  

A. montagui 

 

1 0.2321 0.0725 0.7945 2-way ANOVA 

  

A. borealis 

 

1 0.07831 0.2759 0.6137 2-way ANOVA 

         Oxygen  

Consumption 

(mg/L/hour) M. calcarea pH 1 6.455x10
-14

 2.78 0.1213 2-way ANOVA 

  

A. montagui 

 

1 3.7549 x10
-14

 1.3358 0.2723 2-way ANOVA 

  

A. borealis 

 

1 1.761 x10
-14

 0.3854 0.552 2-way ANOVA 

  

M. calcarea Food 1 1.0095 x10
-14

 0.4368 0.5212 2-way ANOVA 

  

A. montagui 

 

1 1.2267 x10
-14

 0.4364 0.5225 2-way ANOVA 

  

A. borealis 

 

1 8.042 x10
-15

 0.176 0.6859 2-way ANOVA 

  

M. calcarea pH x food 1 1.3989 x10
-14

 0.6053 0.4516 2-way ANOVA 

  

A. montagui 

 

1 4.572 x10
-15

 0.1626 0.6945 2-way ANOVA 

  

A. borealis 

 

1 1.2576 x10
-14

 0.2752 0.2752 2-way ANOVA 
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Table 2.4 Allometric growth equations and characterizations for M. calcarea, A. montagui, and A. borealis for in situ and all treatment conditions in 2015, and 2016. W= 

weight in grams; L= length in mm.  

Species N Station/Year Pre/Post Experiment/Treatment Mean Length ± 1SD Allometric equation R
2
 95% CI of b Relationship 

Macoma calcarea 120 ML5 -10/2015 Pre experiment 20.51 ± 3.47 W=-8.2283L
2.8059

 0.9312 2.667-2.944 (-) allometry 

Astarte montagui 195 ML5-10/2015 Pre experiment 19.47 ± 2.71 W=-9.40138L
3.33077

 0.8935 3.168-3.494 (+) allometry 

Astarte borealis 38 ML5-10/2015 Pre experiment 31.62 ± 4.14 W=-10.7297L
3.6723

 0.9121 3.293-4.0520 (+) allometry 

     
 

   
Macoma calcarea 37 ML5-10/2015 Post experiment Control 2015 20.86 ± 2.97 W=-7.4891L

2.360313
 0.9505 2.360-2.755 (-) allometry 

Astarte montagui 54 ML5 -10/2015 Post experiment Control 2015 19.17 ± 2.89 W=-8.8063L
3.1381

 0.9231 2.889-3.387 isometric 

Astarte borealis 7 ML5 -10/2015 Post experiment Control 2015 31.51 ± 5.68 W=-10.7454L
3.6909

 0.8872 2.324-5.058 isometric 

Macoma calcarea 37 ML5-10/2015 Post experiment Acidified 2015 20.83 ± 3.49 W=-8.01063L
2.71697

 0.9641 2.540-2.894 (-) allometry 

Astarte montagui 55 ML5-10/2015 Post experiment Acidified 2015 19.58 ± 2.70 W=-9.3989L
3.3230

 0.9148 3.047-3.600 (+) allometry 

Astarte borealis 7 ML5-10/2015 Post experiment Acidified 2015 31.51 ± 5.68 W=-12.4849L
4.1759

 0.9676 3.376-4.976 (+) allometry 

     
 

   
Macoma calcarea 

 
ML5-10/2015 Post experiment Control Non Fed 2016 16.43 ± 1.88 W=-8.6526L

2.9307
 0.9411 2.256-3.606 isometric 

Macoma calcarea 

 
ML5-10/2015 Post experiment Control Fed 2016 22.11 ± 5.78 W=-8.3092L

2.8174
 0.9835 2.573-3.062 isometric 

Astarte montagui 

 
ML5-10/2015 Post experiment Control Non 2016 19.85 ± 2.26 W=-9.3373L

3.2970
 0.9227 2.851-3.743 isometric 

Astarte montagui 

 
ML5-10/2015 Post experiment Control Fed 2016 20.10 ± 2.83 W=-9.70737L

3.4315
 0.922 2.965-3.898 isometric 

Astarte borealis 

 
ML5-10/2015 Post experiment Control Non Fed 2016 30.64 ± 3.69 W=-10.0131L

3.4766
 0.905 2.092-4.861 isometric 

Astarte borealis 

 
ML5-10/2015 Post experiment Control Fed 2016 33.63 ± 1.69 W=-15.9726L

5.1390
 0.8703 2.711-7.567 isometric 

Macoma calcarea 

 
ML5-10/2015 Post experiment Non Fed Acidified 2016 19.09 ± 2.13 W=-8.1164L

2.7587
 0.9251 2.037-3.480 isometric 

Macoma calcarea 

 
ML5-10/2015 Post experiment Acidified Fed 2016 19.06 ± 1.86 W=-7.4936L

2.5315
 0.919 1.841-3.222 isometric 

Astarte montagui 

 
ML5-10/2015 Post experiment Acidified Non Fed 2016 19.15± 2.47 W=-9.2231L

3.2770
 0.9207 2.828-3.726 isometric 

Astarte montagui 

 
ML5-10/2015 Post experiment Acidified Fed 2016 19.33 ± 2.60 W=-9.3645L

3.3137
 0.9005 2.800-3.828 isometric 

Astarte borealis 

 
ML5-10/2015 Post experiment Acidified Non Fed 2016 31.74 ± 1.54 W=-9.015L

3.177
 0.4341 (-)0.834-7.189 isometric 

Astarte borealis 

 
ML5-10/2015 Post experiment Acidified Fed 2016 31.67 ± 2.69 W=-10.1014L

3.4797
 0.8599 1.764-5.196 isometric 
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Figures  

  

Figure 2.1 Station map of AMBON cruise in 2015. Bivalves used in experiments were collected from station ML 5-10 

(highlighted in red).  
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Figure 2.2 Location of length measurement on all 

bivalve shells. 
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Figure 2.3 An example of the regression analysis (A. montagui from an acidified tank, 2015) to 

determine oxygen consumption (mg O2/L/hour) of each individual clam during experiments. The slope 

from the regression was multiplied by the volume of water to calculate oxygen consumption (mg 

O2/L/hour).   
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  Figure 2.4 Mean percent change in length (mm) (top) and weight (g) (bottom) (± 1 SD) of M. calcarea, A. montagui, and 

A. borealis from the control treatment (8.05 ± 0.02) and acidified treatment (7.76 ± 0.02) in 2015. 
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Figure 2.5 Mean (±1SD) percent change in length (mm) by species and size class in 2015. 
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Figure 2.6 Mean percent change in length (mm) (top) and weight (g) (bottom) (±1SD) in the four 

treatments of 2016 experiments.  
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Figure 2.7 Mean (±1SD) percent change in length (mm) by species and size class in 2016. Key: CF= Control 

Fed, CNF= Control non-fed, AF: Acidified Fed, ANF: Acidified non-fed. Note: bars with no error bars only 

had one representative. 
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Figure 2.8 Mean oxygen consumption (mg/L/hour) ± 1SD, by treatment and species for 2015 experiments. 
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Figure 2.9 Log transformed oxygen consumption vs log transformed weight of all species and both treatments 

from 2015 experiments.  
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Figure 2.10 Mean oxygen consumption (mg/L/hour) ± 1SD, by treatment and species for 2016 

experiments. 




