Sea Ice – Ocean Modeling:

1. High resolution
2. Floe size distribution

Michael Steele
Jinlun Zhang
Axel Schweiger
Harry Stern
Polar Science Center / Applied Physics Lab / University of WA
J. Zhang modeling taxonomy:
PIOMAS, BESTMAS, BIOMAS, MIZMAS, HIOMAS

MAS = Modeling & Assimilation System

PIO = Parallel Ice-Ocean (N. Pole in Greenland)
BEST = Bering Ecosystem Study (N. Pole in AK)
BIO = Biology/Ice/Ocean (AK)
MIZ = Marginal Ice Zone (AK)
HIO = High Resolution Ice/Ocean (AK)
A consistent ice volume time series from **PIOMAS**

Trend: \(-3.1 \pm 1.0 \times 10^3 \text{ km}^3/\text{decade}\)
Sea Ice – Ocean Modeling:

1. High resolution

HIOMAS
= High resolution Ice/Ocean Modeling & Assimilation System
(2 km)

Dept of Homeland Security (DHS)
Arctic Domain Awareness Center (Anchorage, AK)
How do models simulate sea ice floe geometry?

“50% ice concentration; 1 m thick”
How do models simulate sea ice floe geometry?

"50% ice concentration; 1 m thick"

They don’t!
How do models simulate sea ice floe geometry?

"50% ice concentration; 1 m thick"

no way… maybe!

They don’t!
How do models simulate sea ice floe geometry?

"50% ice concentration; 1 m thick"

no way… maybe!

They don’t!
Floe diameter in MIZMAS

March 2014

June 2014

September 2014

Mean Floe Diameter (km) = \(\int g(l) l dl \)

12 sizes

10 cm \(\Rightarrow \) 3 km
Floe diameter in MIZMAS

March 2014

June 2014

September 2014

Mean Floe Diameter (km) = \int g_l(l)ldl

12 sizes

10 cm \rightarrow 3 km

- Zhang et al. (JGR, 2015): theory
- Zhang et al. (Elementa, 2016): first pan-arctic simulations
- Stern et al. (Elementa, in review, 2017): floe diameter obs from MODIS, SAR, hi-res visible
- Future: More model-obs studies, impact on ocean properties, bio ??

10 cm \rightarrow 3 km